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AP Abstract E:

We are interested in fitting two-dimensional, Gaussian
conditional Markov random field (CMRF) models to images.
The given finite image is assumed to be represented on a
finite lattice of specific structure, obeying a CMRF model
driven by correlated noise. The stochastic model is char-
acterized by a set of unknown parameters. We describe two
sets of experimental results. First, by assigning values
to parameters in the stationary rangc, two-dimensional pat-
terns are generated. It appears that quite a variety of
patterns can be generated. Next, we consider the problem
of estimating the unknown parameters of a given model for an
image, and suggest a consistent estimation scheme. We also
implement a decision rule to choose an appropriate CMRF
model from a class of such competing models. The usefulness
of the estimation scheme and the decision rule to choose an
appropriate model is illustrated by application to synthetic
patterns. Unilateral approximations to CMRF models are
also discussed.
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1. Introduction

Conditional Markov random field (CMRF) models have many
applications in image processing and analysis; for instance,
they can be used for the design of image restoration algo-
rithms [1-4], for characterization of textures [4-7], and for
image coding [4] applications. Apart from their applications
in image processing, CMRF models are an active research topic
in the statistical literature [8-9].

Typically, an image is represented by two-dimensional
scalar data, gray level variations defined over a square grid.
One of the important characteristics of such data is the stat-
istical dependence of the gray levels within a neighbor set.
For example, y(i,j), the scalar gray level at position (i,3J),
might be statistically dependent on the gray levels over a
neighbor set that includes {(i-1,3), (i+l1l,3),(i,j-1),(i,3+1)}.
Due to the lack of a natural preferred direction in the grid
as compared with the discrete time interpretation of one-dim-
ensional Markov processes, the classical definitions of "past"
and "future" are not generalizable to Markov random fields.

Suppose that we assume that y(i,j) is statistically dep-
endent on the nearest neighbors along the east, west, north
and south directions. Then the Markov property in the cor-
responding CMRF model is induced by requiring that the con-
ditional probability distribution of y(i,j), given the values
at all other sites, should depend only upon the values at the
four sites nearest to (i,j), namely, y(i-1,3j), y(i+l,3),

y(i,j-1) and y(i,j+1l). Wider classes of CMRF models can be
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considered by including dependence upon the values at more

remote sites. For instance, corresponding to the first order
Markov model mentioned above, we can have a second order CMRF
model that includes dependence on the eight nearest neighbors,

and so on. 1In this paper, we are primarily interested in

Gaussian Markov fields, i.e., the conditional distribution of
y(i,3) given all other lattice observations is normally dis-
tributed with a mean that is a linear function of the obser-
vations at neighboring sites and with constant variance

(say) v. 1In these models, the observation a* y(i,j) is
written as a linear weighted sum of the observations over the

corresponding neighbor set and a correlated noise sequence, and

is characterized by a set of coefficients and the variance of

the noise driving the model.

Prior to the use of these models, two problems have to
be tackled, namely, the estimation of the unknown parameters
and the choice of an appropriate neighbor set for the given
image. The first problem has received some attention in the
- literature. Besag [8] developed coding schemes for the
‘ estimation of parameters in CMRF models and maximum like-
lihood (ML) estimation schemes [9] for a first order isotropic
CMRF model, by assuming a Gaussian structure for the noise.
In the coding method the grid points {or sitas) are divided
into two sets (say A and B), such that the conditional dis-
tributions of gray levels associated with the members of set A

given the observed gray levels at all other grid points are




mutually independent. Once the forms of the conditional dis-
tributions are specified (except for a few unknown parameters),
an expression for the conditional likelihood can be written,

as the product of the conditional distributions over the

members in set A. By maximizing this likelihood function,

conditional maximum likelihood estimates of the unknown para-~
meters can be obtained. One of the main disadvantages of this
method is that the estimates thus obtained are not efficient
(9] due to a partial utilization of the data. Though by com-

plicated coding schemes [10], the utilization rates may be

improved, the basic problem still remains. Also, for a par-
ticular CMRF model, more than one coding scheme can be realized,
yielding several estimates likely to be highly dependent. Some
arbitrary methods are used to combine these estimates. This
coding approach has been used for the analysis of geographical
data [8] and, very recently, in texture analysis [7] for the
case of binomial variables.

Unlike the cases of one-dimensional time series models
or two-dimensional unilateral models, deriving an expression
for the likelihood of the observations poses some difficulties
for CMRF models that include dependence on neighbors along
all directions. This is due to the fact that the Jacobian
of the transformation matrix from the noisy variates to the
observations is difficult to evaluate. The problem of eval-
uating this determinant can be avoided by making assumptions
about the representation of the underlying lattice. Specif-

ically, by assuming representation on a toroidal lattice
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{4-6,9]), explicit expressions can be derived for the de-
terminant term, as the transformation matrix possesses a
block circulant structure whose eigenvalues can be written
down explicitly. We use this representation and write
explicit expressions for the likelihood of the observations.
Since the likelihood function is nonqﬁadratic in the para-
meters, the estimates are determined by using numerical
optimization procedures such as Newton-Raphson, etc.

An alternative estimation scheme that yields consistent
estimates for the parameters is given. These estimates are
similar to the "least square"” estimates in autoregressive
time series models (we point out later the inappropriateness
of using the term "least square" estimates in CMRF models).
The estimation method does not involve computations by gra-
dient methods, but involves inverting an mxm symmetric matrix
for a CMRF model with dependence on 2m neighbors.

The second problem considered in fitting CMRF models is
the choice of appropriate neighbors in images. From one
dimensional time series analysis it is known that the use of
an appropriate model leads to good results in forecasting
and similar applications. This problem has been considered
in the literature [4]; the decision rules developed are
asymptotically consistent, transitive and parsimonious. They
are based on the corresponding decision rules for discrim-
inating between different autoregressive models [11l]. We
implement such a decision rule for choosing between different

neighbor sets.

-




The usefulness of the estimation scheme and the decision
rule for the choice of neighbors is demonstrated by application
to synthetic patterns, the underlying true model of the syn-
thetic patterns being known. This leads us to the problem
of generating synthetic patterns. Computationally elegant
solutions using torus representations for generating synthetic
patterns obeying CMRF models have been developed in [4]. We
use this approach to generate a number of two-dimensional
Markov patterns. The patterns are quite varied and some of ]

them possess repetitive periodic patterns. One of these syn-

thetic patterns is used for illustrating the usefulness of
the estimation scheme.

In a previous paper [12], we considered fitting another
class of spatial autoregressive models, the so-called sim-
ultaneous autoregressive (SAR) models. Specifically, we sug-
gested an approximate ML estimation scheme and implemented a
decision rule for the choice of appropriate neighbor sets.

The CMRF models considered in this paper are non-equivalent

to the SAR models considered in ([12], in that given a SAR model
an equivalent CMRF model can always be found (usually with
more parameters); however, the converse is not true. For
instance, there is no equivalent SAR model for the first order
CMRF model. The SAR models can be thought of as higher order
Markov models. For instance, the conditional probability

distribution function of a four-neighbor SAR model with dep-

endence on the east, west, north and south neighbors is a




function of the eight nearest neighbors and the second
nearest neighbors on the east, west, north and south. Some
of these points are illustrated later using synthetic patterns.

Another topic in this paper is unilateral approximation to
CMRF models. Following Besag [8], we define the unilateral
neighbor set of any site (i,j) in the positive gquadrant to
consist of those sites (k,%) on the lattice which satisfy
either (i)2<j or (ii)?=j and k<i. Such neighbor sets are of
interest in Kalman filtering of noisy images [1,13]. We take
a specific case of a first order CMRF model and discuss several
unilateral approximations. The patterns corresponding to
the first order CMRF model and its unilateral approximations
look very similar in structure.

The organization of the paper is as follows: In Section 2,
we consider the estimation problem and suggest a consistent
estimation scheme. The implementation of the decision rule
for the choice of appropriate neighbors is discussed in Section

3. 1In Section 4 experimental results are given.




2. Estimation of Parameter in CMRF Models

Assume that the observations {y(s),st¢Q} have zero
mean and obey the CMRF model in (2.1), the neighbor set

of dependence being denoted by Nl:

y(s) = I 8 Iy(s + (20 + y(s = (k,2))] +

(k,i)GNl (2.1)

YV e(s) , s€ @

In (2.1), N, is a neighbor set such that if (k,l)ENl, then

1

(—k,—l)# N,, i.e., in our notation N; = {(0,1),(1,0)} means

1l
that the pixel at (i,J) is statistically dependent on

- T b =i e

neighbors {(0,1),(0,-1),(1,0),(-1,0)}. The noise sequence
e(s) is correlated with zero mean and unit variance and
(6,v) are unknown.

Let

g(s) = colly(s + (k,2)) + y((s) + (~k,=2)), (k,R)&N,]

Then for a CMRF model we have
E(e(s)g(s)) = 0 , ¥s (2.2)

To ensure homogeneity, the coefficients {Gk 2,(k,llSNl}, must
, .

& obey
. u ij(Q) >0 (2.3)
| where
! Voo (8) = (1-20T9, ) (2.4)
3 Hiig o) = 2 5 .
and
) ¢;5 = collcos 2m((i-1)k + (3-i)8), (k,2)eN;]1  (2.5)
iij e 1

For a finite image, and a CMRF in which neighbors in

all direction are considered, some of the neighbors for the




boundary sites are not defined. Several different assump-
tions can be made regarding the distribution of these pixels
[4] [14])]. 1In this paper we assume that the image is folded
on a toroidal lattice such that, for all (i,jlQ,

yi(s) + (il,jl)l = yl(s) + (il~1,jl-1)mod M+ 1] (2.6)

This assumption ensures that all the relevant neighbors of
any y(s) belonging to the finite image are well defined.
Letting e be the lexicographic ordered array of {e(s),s Q},
(2.1) can be rewritten as

H(B)y = /v e (2.7)
where

]

8 = COl[ek,Q’(k’Q)eNl

H(8) is a block circulant matrix

[ H )
By, 0 - 1,M
Hyomw By B2 oo o By oug
H(8) =
~ e e e e e . . e . e (2.8)
. Hy,2 11
- —
\ and each component matrix Hl 3 is circulant. For example,
14
when N, = {(0,1),(1,0)} we have
! .
. Hl,l = circulant (1,80’1,0,...,60,_1)
4
- Hl,2 = circulant (61’0,0,...,0)
f Hl,M = circulant (8_1,0,0,.L.,0)
, -
and H =0, 34+ 1,2,...,M




Given an image, we are interested in fitting a
CMRF model to it. This problem has received some attention
in the literature. 1In [8], Besag developed coding schemes
for estimation, and ML schemes were used in [9] for simple ;

CMRF models. As mentioned before, the coding approach /

yields inefficient estimates due to a partial utilization

of data. ML estimates can be derived by assuming some
appropriate distributions for the noise sequence {e(s),s¢Q}.
Assume, for instance, that e(s) is distributed normally with
zero mean and unit variance. Using this assumption, the

log likelihood function &n p(y|8,v) can be written as

tn p(y|6,v) = &n det H(B) = (M2/2)ln2nv -1 yTH(e)y (2.9)
A ~ 2y T

From the theory of block circulant matrices,

n det H(8) = b) lnu;.(e) (2.10)
~ (i,3)€Q =

Using (2.4), (2.9) and (2.10) we have

f tin ply [8,v) = I en (1-26,.) - (M°/2)2n 27y
A (i,3)Q ~~+3
- 1T
-—— % 5}
. 7y YH(O)Y (2.11)

Since H(8) is a block-circulant matrix, it is diagonalized

by a two-dimensional FFT, with eigenvalues u;j(g). Using

. this fact, we have

Al

T = _qT
y H(8)y = g Iz IF (1-2670, )

. where z(Aij) are the Fourier transforms of y(s), s¢Q and




Aij = (2n(i-1),2n(3-1)). Substitution of (2.12)into (2.11)
M M
gives

tn ply[0,v) = I 2n (1—29T9ij) - (M%/2) n 2mv
& (2.13)

2 T
1 I |lz(x..) 1-207¢., .
1ok [l ) 117 (12879, 1)

Note that the contribution of the exponent term of the
likelihood function is linear in 6, unlike the case of SAR
models [12], where this term 1s quadratic. Consequently,
the notion of least squares estimates does not extend to
CMRF models. Numerical optimization procedures such as
Newton-Raphson can be applied to obtain ML estimates. The
ML estimates thus obtained are asymptotically consistent
and efficient. However, the computation of ML estimates
might become expensive due to the calculation of the
gradients of the log likelihood function. An approximate
ML estimation scheme for CMRF models, without substantial
sacrifice in accuracy, is considered elsewhere [15]. To
avoid these computational difficulties, we suggest the

following estimation scheme: consider the estimates

B = L a(s)gls)] (2 a(s)y(s)) (2.14) .
and ~ T 2
_1 ¥ (y(s) - 8, 2(s)) (2.15)
Vo T M2 -0 -

A

The easily computable estimate 90 is asymptotically consistent,
as we will now prove.

Theorem 1: Let y(s),sell be the set of observations obeying




the CMRF model (2.1). Then the estimate 6. is consistent.

0
Proof: From (2.1) and (2.14),

A~

8y = [Z a(s)g (1171 (2 q(s) (6Tq(s) + VRe(s))
Q - @~ - -
_ T, y1-1
=8+ Zg(e)g ()17 /Fels) (2.16)
Equivalently,
(£ g(s)q (8)] (8, - 8) = Ve (s) (2.17)
; 2

Since the matrix I g(s)gT(s) is positive definite, and
E(g(s)e(s)) =0 w?th probability 1, the assertion of the
theorem follows.

However, the estimate §0 is not efficient since it is
not equal to the ML estimate obtained by maximizing (2.13).
In this paper we use the estimate in (2.14) and (2.15) for

simulation studies.




3. Model Selection

We briefly discuss the decision rules for the choice
‘ of appropriate CMRF models. The importance of appropriate
model selection was illustrated in the case of SAR models
[12],[15], using synthetic patterns. Specifically, it

was shown that the quality of reconstruction varied con-
siderably depending upon the underlying model. We can ex-
pect a similar situation with respect to CMRF models. The
problem of choosing an appropriate CMRF model becomes
difficult due to the rich variety of possible model

structures. Suppose we have an original image, say a 64 x

64 window from one of the Brodatz textures, and we fit i
different CMRF models to the texture. It can be argued 1
that by visual inspection of the reconstructed patterns
corresponding to the different fitted models, a decision

can be made regarding the appropriate model. However, there

are several objections to this procedure. First, the

decision rule is subjective and no quantitative measure

of possible error in the decision is given. More signifi-
cantly, the reconstructed patterns corresponding to an
original RF model and another RF model which includes the
original model and some extra neighbors look very similar.
Hence, a decision based on visual inspection is unreliable.

Also, given an arbitrary image pattern, no origiral to




compare with being available, it should be possible to
choose on a quantitative basis an appropriate model from

a family of such models. 1In the context of this paper,
different CMRF models should be interpreted as representing
different neighbor sets Nl'

The problem of choosing appropriate CMRF models has
received some attention in the literature. The possible
approaches are using pairwise hypothesis tecsting procedures
[7-8], Akaike's information criterion (AIC) [16], and the
Bayes approach [11] [17]. The main criticisms of the
pairwise hypothesis testing approach for CMRF model selection
are that the resulting decision rules are not transitive
[11], and the decision rules are not consistent, i.e.,
the probability of choosing an incorrect model does not
go to zero even as the number of observations goes to
infinity. When coding schemes are used, more than one
coding scheme results for the same data. It might well
turn out that the null hypothesis may be rejected on some
coding schemes but accepted on some other coding schemes
for the same data; some ad hoc methods leading to very
conservative decisions [7-8] are used to overcome this
problem. When it is required to choose between a first order
CMRF model and a second order CMRF model, to ensure that the
likelihoods are comparable, the cocding scheme corresponding to
the second order CMRF model should be used for the first order
CMRF model also, causing further loss of efficiency in est-
imation for the first order model. Also, frcm a philosophical

point of view, the pairwise hypothesis testing procedure is

"‘\.\-vr-_ N .




not suitable for choosing from a family of different CMRF
models. This methodology is well suited for classical prob-
lems such as drug testing where the distribution under the
null hypothesis that the drug is not effective is specified
and the consequences of rejecting the null hypothesis

when it is not true (type I error) are crucial. On the
other hand, in the model selection problem, we are only
interested in choosing a model that can reasonably account
for the observed statistical phenomena. When the problem
is posed in such a way that the null hypothesis is a
specified CMRF model, and the alternative is its negation,
the consequences of type I error are not serious. 1In

other words, we cannot take a subjective view of any
specific hypothesis, or equivalently any specific CMRF
model, as is implicitly required in pairwise hypothesis
testing procedures.

The model selection problem comes under the category
of multiple decision problems. A method that is well suited
for this problem would be to compute a test statistic
for different models and choose the one corresponding to
the minimum. The 2IC criterion and the Bayes method are
two such procedures. The AIC statistics can be formulated
from the expression of the log likelihood function given
in Section 2; the best model is the one which minimizes
the AIC statistic. The method gives transitive decision

rules but is not consistent even for one-dimensional




autoregressive models [18]. Hence it is not advisable
to use the AIC method for CMRF model selection.

We formulate the problem and suggest a decision
statistic that is consistent, transitive and parsimonious.
The actual derivation can be done by using standard Bayes

decision theory, as was done for SAR models in [17].

Suppose we have three sets Nll’NIZ’N13 of neighbors con-
taining m,,m, ,m, members, respectively. Corresponding
to each qu, we write the CMRF model as
y(s) =L fq kg (s + (k,2) + y(s=(k,2)] +
(k, L) EN dr %
1q
/)~e(5 R
v\q )
ﬂq,k,ﬁ# 0, (k,Q)Equ, ,vq>0, qg=1,2,3

Then the decision rule {[4] for the choice of appropriate

neighbors is: choose the neighbor set Ny if

g* = arg min {Cq} (3.2)
g9
where ¥ 2 A 2
Cq = -Zé Qn(l—gq?qij) + M anq + quln(M ) (3.3)
where
T = Collfy oy s (K, )ENy ]
and
?q,i,j = Col[cos %1((i-1)k + (j—l)l),(k,Q)equ]
A .- .




The model selection procedure consists of computing C
for different models, and choosing the one corresponding
to the lowest Cq. The factor 2 appears in the third
term of (3.3) to account for the fact that in our

notation mq refers to the number of symmetric neighbors.
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4. Experimental Recsults

We describe the results of some experiments regarding
the generation of two-dimensional patterns obeying known CMRF
models and estimation schemes developed in Section 2.

Experiment 1: Synthetic generation of two-dimensional

Markov patterns.
From (2.7) we have
H(M)y = /Vg (4.1)

where e is a zero mean correlated noise sequence with correla-
tion matrix lS@gT) = H(Q). The synthetic generation is then
done by assigning some arbitrary values in the stationary
region to 8, and using the correlated noise vector e. The
sequence {g(s)} may be generated by using DFT computations
[19], and Y can be generated by inverting the matrix H(g).
Since H(Q) is a block-circulant matrix, Fourier computations
can be used for generating Y- An alternative procedure
developed in [4] is used in this paper. Before proceeding

2

further, we define the following quantities: denote the M

Fourier vectors fij’ l < i,j=M by

_ M=1
fij = col[Ej,Xitj,...,Xi Ej]' )
t, = col[l,l.,X.,...,AM"l],M-vector
J J° 3 J
A =

exp[v-1 2m(i-1)]
M
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The synthetic generation scheme then is as follows:

= T(f..x..//u.. (8 + al 4.2
Y = D(E;5%;3/05(0)) + ol (4.2)
where
*T
X553 = /géf‘.ij w
M
1 = (1,1,...,1) , M2—vector

and u'ij(g), l<i,jsm, are defined in (2.4) and w is an identical
and independently distributed noise sequence of known distribu-
tion. For a proof that such a Y indeed obeys underlying CMRF
model, see [4].

We generate the vector w using a Gaussian pseudo-random
number generator, generate its Fourier sequence {Xij} by a two-
dimensional FFT, and finally use (4.2). Sixteen such 64x64
images were generated using CMRF models with different neighbor
sets and parameters. The gray scale values of the images were
scaled to lie in the range 0~63. Alternatively, by multiplying
the value of v used by an appropriate constant the same patterns
are obtained without scaling. The details of the models are
given in Table I and the corresponding images are shown in
Fig. 1. It can be seen that the patterns generated are quite
varied and some of them look similar to real textures. Contrary
to the existing belief [20] that spatial autoregressive models
are incapable of exhibiting the local pattern replication
attribute considered an essential ingredient of texture, some

of the windows do exhibit repetitive patterns.
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We use matrix notation in referring to windows of
images. Diagonal neighbor sets secem to induce diagonal
patterns, as in the windows in positions (1,2),(1,3),(2,2)
and (2,3). The pattern in the window (2,1) corresponding
to a CMRF model with N, = {(0,1),(1,0),(-1,1),(1,1),(0,2),

(2,0)} can also be generated by a SAR model as shown in

-1,0 = %,0°7°

.28 using the procedure outlined in [4-5].

(12] with N {(0,1),(0,~1),(-1,0),(1,0)} and 6

i

-.12, 60,_1 = 90,1 =
Note that this pattern and the one in window (2,1) of Fig. 1
in [12] are very similar. Likewise the diagonal pattern (2,2)
generated by a CMRF model with N; = {(-1,1),(1,1),(2,0),(0,2),
{(2,-2),(2,2)} can also be generated by a SAR model with N =

{(-lll)’(ll-l)l(lll)'(—ll—l)} ’ = -.14 and

n =
“1,1 - %1,-1

= ,28. However, the patterns in windows (1,1)

®1,1 7 %141
and (4,4) corresponding to a CMRF model with N; = {(0,1),(1,0)}
cannot be generated by any finite parameter SAR model.

The role played by adding nearest neighbors can be
illustrated using patterns {4,2),(4,3) and (2,1). Window (4,2)
corresponds to Nl = {(1,0),(0,1),(2,0),(0,2)} and produces
horizontally oriented, macrostructured strip patterns. By
adding the symmetric neighbor (1,1) a diffused version in
window (4,3) is produced. When an extra symmetric nearest
neighhor (1,-1) is added we obtain a more microstructured

pattern resembling water. By adding similar neighbors to the

model in (4,1), vertically oriented patterns can be produced.
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Experiment 2: The role of parameter values in the

structure of patterns.
To illustrate the role played by the coefficients
in generating the two-dimensional patterns, we consider the
pattern corresponding to the CMRF model N, = {(-1,1),(1,1)},

= =-,14. The

(PR

a = 30.000, v = 1,1111, 6_1’1 = ,28 and 6 1
values of the parameters tried are given in Table II and the
resulting pictures in Fig. 2. Note that as the parameters
are varied, the basic pattern is still retained but the
"busyness" of the pattern is varied.

All the patterns considered thus far were generated
using the same pseudorandom number generator. As illustrated

in Figs. 4 and 6 of {12] for SAR models, different psuedorandom

sequences produce very small perturbations in the patterns.

Experiment 3:

To test the usefulness of the estimation scheme
and the choice of appropriate neighbor sets, experiments were
done with one synthetic pattern. The true model used to
generate the test pattern corresponds to Nl = {(-1,1),(1,1)},
a = 30,00, v = 1.1111, 6_1'1 = -.14, 81'1
CMRF model, the synthetic image (1,1) in Fig. 3 was generated.

= ,28. Using this

But for correct inference purposes regarding the estimation
schemes, the original window (values not scaled for display

purposes) was used. For estimation of the parameters, the
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sample mean of the window was subtracted and (2.14) and (2.15)
were used. The test statistic Cq in (3.3) was also computed.
The actual values of the estimates corresponding to different
neighbor sets are given in Table III and the corresponding
reconstructed images are shown in Fig. 3. Table III shows
that the estimated values corresponding to the true neighbor
sets are close to the true values. Note that when extra
neighbors are added, the corresponding parameter values are
very small. The decision statistics corresponding to the
models considered are given in Table IV and the decision rule
(3.2) picks up the true model.

Fig. 3 shows the images corresponding to the different
neighbor sets in Table III using an identical array of noise
variables. Windows (1,2) and (1,3) correspond to CMRF models
that are subsets of the true model and are not as good as the
original in (1,1). Window (1,4) is generated by the true

neighbor set with estimated parameters and is very similar to

(1,1). The pattern (2,1) corresponds to Nl {(1,0),(0,1)},
which has no common neighbors with the true neighbor set and

is distinctly different from the original. The windows (2,2),
{2,3) and (2,4) look close to the originals since the generating

models include the original neighbor set. But the decision

rule suggested here correctly eliminates these models.
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Experiment 4: Unilateral approximations to CMRF models

Unilateral approximations to CMRF models with general
neighbor sets of dependence are of interest for several
reasons. First, the estimation of parameters in unilateral
spatial autoregressive models can be handled similarly to
one-dimensional autoregressive time series models. Secondly,
unilateral neighbor sets make possible a state space representa-
tion of the images, which is useful in Kalman filtering of
images [13]. Though it would be futile to expect that "good"
unilateral approximations can be found for any arbitrary CMRF
model, it would be worthwhile to explore the adequacy of such
approximations even for some specific CMRF models. We consider
the simplest CMRF model with N, = {(0,1),(1,0)}. As observed
in [8] several unilateral models driven by white noise can be
constructed in increasing order of complexity. The simplest
unilateral model involves dependence on the north and west
neighbors, the next approximation involves dependence on the
north, west and southwest neighbors, and so on. In Fig. 4,
we have shown patterns corresponding to several such approximate
models. Window (1,1) corresponds to the original pattern, and
(1,2) to the same neighbor set as in (1,1) but with estimated
parameters. The pattern in (1,3) corresponds to the unilateral
neighbor set N = {(-1,0),(0,-1)}; the parameters are estimated

using the least squares method and the pattern was reconstructed

using the method in [5]. This pattern loocks surprisingly similar




to (1,1) and (1,2). A careful analysis indicates that this
is to be expected. This unilateral process is defined such
that the probability distribution of y(i,j) given all the
observations in the unilateral region is equal to the prob-
ability distribution of y(i,j) given y(i-1,3),y(i,j-1).
However, for the same unilateral neighbor set, the conditional
distribution of y(i,j) given all others except y(i,j) depends
(8,211 on y(i-1,3),y(i+1,3),y(i,3-1),y(i,3+1),y(i-1,j+1),

and y(i+l,j-1), a CMRF model that "includes" the original
CMRF model with N; = {(0,1),(1,0)}. BAs illustrated

in Experiment 3, the patterns corresponding to a CMRF model
with a neighbcr set Nlland another CMRF model that includes

Ny, and some extra neighbors, look very similar. Hence, the

to be an excellent approximation to a first order CMRF model.
Several other unilateral approximate patterns and bilateral

patterns corresponding to N = {(0,1),(1,0),(0,-1),(~-1,0)}, a

simplest unilateral neighbor set N = {(-1,0),(0,-1)} seems
SAR model, are shown in Fig. 4. The details of the models
|

N may be found in Table V. However, in more general situations,

3 the procedure suggested in [1], based on approximating the
spoctral density of a CMRF model by successive approximations
of unilateral neighbor sets, should be used. The goodness

1 of approximation can be visually evaluated as described above.

By comparison, the unilateral approximations with

o N = {(0,-1),(-1,0)} or N = {(0,-1),(-1,0),(-1,1)} may not be

good for SAR models with N = {(-1,0),(1,0),(0,1),(0,-1)},
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since the conditional distribution of the latter model
includes more neighbors than the conditional distribution

corresponding to either of the former models.
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S. Conclusions

We have considered some aspects of statistical inference
methods applied to two-dimensional discrete Markov random fields.
Specifically, we have considered estimation schemes for the
parameters of the Markov model and decision rules for the
choice of an appropriate model. We have illustrated the use-
fulness of the methods by using synthetic patterns. Currently,

work is in progress on testing the estimation schemes using

real textures.
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Table I. Details of CMRF models corresponding to Fig. 1.
For all thc models a=30.00, v=1.1111,
(F—T;—Igl?g%) Neighbor set Nl Parameters
(1,1) (1,0),(0,1) 61'0=.2794, 90’1=.1825
(1,2) (-1,1),(1,1) 6_1,1=.28, By 1=--14
(1,3) (=1,1),(1,1) 6-1,1="14' 8,128
(1,4) (1,0),(1,-1),(0,1),(1,1) 61,o=‘3357' 8, _==.25
eo,1='3246' 8, 1=--2126
(2,1) (1,0),(1,-1),(0,1), Gl,0=-.206L 91'_1=.0536,
(1,1),(2,0),(0,2) 90,1=.4467, 8, =-0536,
92’0=—.0123 60’2=-.0580
(2,2) (1,-1),(1,1),(2,0), 61'_1=-2341,Bl'1=.4682
(0,2),(2,-2),(2,2) 6, o=-0655, B ,=-0655
92'_j=—0163,62’2=-.0655
: (2,3) (-1,1),(1,1) 6_1'l=.28, o, =-,22
(2,4) (1,0),(0,1),(2,0),(0,2), 61,0=.12,<%,1:-.10, 8, o=-08,
3 (3,0),(0,3),(4,0),(0,4) 60'2=-.09, 83'0=-.11,
| (%'3=.11, 94,o="°7'(’q4=°°9
¥ (3,1) (1,0),(0,1),(3,0),(0,3) 0 o=-16, 85 1=-10,
93,0='12’ 60’3=-.14
‘ (3,2) (1,0),(0,1),(3,0),(0,3) 61'0=.1o, 90,1=.16,
: 93'0=—.l4, 60,3=,12
. (3,3) (1,0),(0,1),(1,1) o o=-12, % y=--10,
j (-1,1),(3.,0),(0,3) 91'1=.08, 61,109,
$ 0y g==+11, 8y 5=.11
3
- L o
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Image .
(Flg. ) Nelghbor set Nl w
(3,4) (0,2),(2,0) 90'2=.2794, 92,0'-‘.1825
(4,1) (1;0)1(0,1),(2,0),(0,2) 61’0=.12' 60’1_-_-_.24’
92’0=.16! 60’2=—.18
(4,2) (1,0),(0,1),(2,0),(0,2) 81, 0==-24, 85 =12,
82,0=-'18' 60,2='16
(4,3) (1,0),(0,1),(1,1),(2,0) 0G24, 8 1=.12
(0,2) 91,1='uv 8, o==-18, e0'2=_15
(414) (011),(110) eo’l="-12' 61,0.:.18




Table II. Values of parameters used to illustrate the
role played by the coefficients in synthesizing
patterns. «a=30.00, v=1.,1111, N,={(-1,1),(1,1)}

k 1
Image Parameters
(Fig. 2) e_l’l elJl
(lll) -28 --14
(1,2) .24 -.14
|
(1,3) .20 -.14
(1,4) .16 -.14
(2,1) .28 -.10
(2,2) .28 -.06
o (2,3) .28 -.18
(274) .28 -.22
(3,1) .26 -.20
(3,2) .24 -.18
(3,3) .32 -.14
(3,4) .34 -.16

e Aan .

S




Table III.

Details of models fitted to the synthetic
data generated by the model with 6_4

1=-.14,

A

N

6, 1=-28, a=30.0, v=1.1111. The éstimate &
is'=30.005.
Image . Estimates of
{Fiag. 3) Neighbor set Nl 4 Coefficlents
(1,2) (1,1) 1.1638 ] =,3116
1,1
(1,3) (-1,1) 1.3520 6_1 l=—.2093
(1,4) (-1,1),(1,1) 1.1033 <] =-,1410
1,1
61,1— 27875
(211) (Oll)l(l,o) lo4934 60 l—-.0052
r
61'0—— 0020
(2,2) (-1,1),(1,L),(1,0) 1.1033 ] =-.,14101, 6, =.27877
-1 1,1
el'0=-.0051
(2,3) (-1,1),(1,1),(0,1) 1.1033 ) =-,1410, 6, =.27873
-1,1 1,1
60,l=-.0017l7
(2,4) (-1,1),(1,1), 1.1033 6_1 1=-.14101,
(llo)r(orl) el'l=.27876,
91’O=-.0049,
60,l=-.0009
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Table IV. Test statistics corresponding to the fitted

models in Table III.

Image
(Fig. 3)

(1,2)
(1,3)
(1,4)
(2,1)
(2,2)
(2,3)

{2,4)

Test Statistic

1583.3
1637.2
1480.6
1676.3
1497.6
1497.1
1514.2




Table

Image
(Fig.

(1,2)

(1,3)

(1,4)

(2,1)

(2,2)

(2,3)

j (2,4)

V.

Markov model 61 0=.2794, °]

The estimate & is 30.01le6.

4) Neighbor set

(-1,0),(0,~-1)
(-1,0),(C,~-1),(1,-1)
(—110) [} (-11_1)
(0,"'1) ’ (11"1)
(-llo) ’ (‘210) [} (-lr"l)
(Ol-l) ’ ('2/"1)’ (ll-l)
(-llo)l(—zlo)l (_ll—l) ’
(-27—1)1 (ol-l)l (0'—2):
(lr"l) ’ (11_2)
("110) [} (-210) ’ (-1,-1),
(-2 I—l)l (-11‘2)1 (-2,-2) [
(Or—l) ’ (01-2)1 (lr-l)
(-1,0) ’ (llo) '

(Oll) ’ (Or-l)
(SAR model)

0,1

1.3117

1.2991

1.2991

1.2979

1.2976

1.2974

1.1582

Unilateral approximations to the first order
=,1825, 0=30.0, v=1.1111.

Estimates of

Coefficients
6y p=-3634, Ay ;=.2550
6_1 0=-3575, 8, _;=.2166
8, _1=-0944
8_1,0=+3575, 6 ) _1=0004,
8y _1=-2165, 6, ;=.0944
8 =-3460, 6, (=.0291,
6 [--0033, 8 72159,
6, _p-0025, 6) _=.0934
6_1,0=.34S7, 62’0=.0285,
6y .f--0040, 8, _=.0019,
80, -2140, 8, _5.0030
8),--0895, 8 _,=.0127
6_1'0= 3457, © 2’0=.0287,
e_l’_l--.oon, 6_2, —-0038,
9—1,-2"0120 8_2'_2=—.0028,
89,-1=-2139, 8, ,=.0076,
61'_1 0895, 61’ 2—.0132
8_1,07%1,0=-1900,
60'_1—60'1-.1387
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Figure 1. Examples of synthetic generation
of patterns using CMRF models (for
details of the models see Table I).
v
1)
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Figure 2. Patterns produced by models with the

L same neighbor set N.={(~1,1),(1,1)1},

a=30.0, p=1.1111 but with different sets

of values for the coefficients (see Table I1I).
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Figure 3. Synthetic patterns corresponding to
original and different fitted CMRF models
(see Table III for details of the fitted

models) .

Figure 4. Several unilateral approximations to
a first order CMRF model (see Table V
for details of the unilateral models).
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